Mystery Shop Key Driver Analysis

Best in class mystery shop programs provide managers a means of applying coaching, training, incentives, and other motivational tools directly on the sales and service behaviors that matter most in terms of driving the desired customer experience outcome.  One tool to identify which sales and service behaviors are most important is Key Driver Analysis.

Key Driver Analysis determines the relationship between specific behaviors and a desired outcome.  For most brands and industries, the desired outcomes are purchase intent or return intent (customer loyalty).  This analytical tool helps mangers identify and reinforce sales and service behaviors which drive sales or loyalty – behaviors that matter.

As with all research, it is a best practice to anticipate the analysis when designing a mystery shop program.  In anticipating the analytical needs of Key Driver Analysis identify what specific desired outcome you want from the customer as a result of the experience.

  • Do you want the customer to purchase something?
  • Do you want them return for another purchase?

The answer to these questions will anticipate the analysis and build in mechanisms for Key Driver Analysis to identify which behaviors are more important in driving this desired outcome – which behaviors matter most.

Next, ask shoppers if they had been an actual customer, how the experience influenced their return intent.  Group shops by positive and negative return intent to identify how mystery shops with positive return intent differ from those with negative.  This yields a ranking of the importance of each behavior by the strength of its relationship to return intent.

Additionally, pair the return intent rating with a follow-up question asking, why the shopper rated their return intent as they did.  The responses to this question should be grouped and classified into similar themes, and grouped by the return intent rating described above.  The result of this analysis produces a qualitative determination of what sales and service practices drive return intent.

Finally, Key Driver Analysis produces a means to identify which behaviors have the highest potential for return on investment in terms of driving return intent.  This is achieved by comparing the importance of each behavior (as defined above) and its performance (the frequency in which it is observed).  Mapping this comparison in a quadrant chart, provides a means for identifying behaviors with relatively high importance and low performance – behaviors which will yield the highest potential for return on investment in terms of driving return intent.

Gap_Analysis

 

Behaviors with the highest potential for return on investment can then be inserted into a feedback loop into the mystery shop scoring methodology by informing decisions with respect to weighting specific mystery shop questions, assigning more weight to behaviors with the highest potential for return on investment.

Employing Key Driver Analysis gives managers a means of focusing training, coaching, incentives, and other motivational tools directly on the sales and service behaviors that will produce the largest return on investment. See the attached post for further discussion of mystery shop scoring.

Click Here for Mystery Shopping Best Practices

 

 

Click Here for Mystery Shopping Best Practices

 

 

Mystery_Shopping_Page

Tags: , , , , , , , ,

About Eric Larse

Eric Larse is co-founder of Seattle-based Kinesis CEM, LLC, which helps clients plan and execute their customer experience strategies through the intelligent use of customer satisfaction surveys and mystery shopping, linked with training and incentive programs. Visit Kinesis at: www.kinesis-cem.com

Trackbacks / Pingbacks

  1. Best Practices in Mystery Shop Scoring | Kinesis CEM - February 8, 2016

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: